

195 Commerce Way Suite E Portsmouth, New Hampshire 03801 603-436-5111 Fax 603-430-2151 800-929-9906 www.analyticslab.com

Ms. Nina Anderson Inspectorate America Corporation 12000 Aerospace Ave, Suite 200 Houston TX 77034-5576

Report Number: 70313

Revision: Rev. 0

Re: Sprague Energy (Project No: 4101-11-01)

Enclosed are the results of the analyses on your sample(s). Samples were received on 06 June 2011 and analyzed for the tests listed. Samples were received in acceptable condition, with the exceptions noted below or on the chain of custody. These results pertain to samples as received by the laboratory and for the analytical tests requested on the chain of custody. The results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report. Please see individual reports for specific methodologies and references.

Lab Number	Sample Date	Station Location	<u>Analysis</u>	Comments
70313-1	06/02/11	Tank 201-South Portland- 201102000505-1	EPA 8260 Volatile Organics	
70313-2	06/02/11	Tank 201-South Portland- 201102000505-2	EPA 8260 Volatile Organics	
70313-3	06/02/11	Tank 201-South Portland- 201102000505-1	EPA 8260 Volatile Organics	
70313-4	06/02/11	Tank 201-South Portland- 201102000505-2	EPA 8260 Volatile Organics	
70313-5	06/02/11	Tank 208-South Portland- 201102000505-1	EPA 8260 Volatile Organics	
70313-6	06/02/11	Tank 209-South Portland- 201102000505	EPA 8260 Volatile Organics	
70313-7	06/02/11	Tank 215-South Portland- 201102000505	Electronic Data Deliverable	
	06/02/11	Tank 215-South Portland- 201102000505	EPA 8260 Volatile Organics	

Sample Receipt Exceptions: Samples were received at the laboratory with sample discrepiencies and placed on hold. The client was notified and requested on 06/28/11 that the samples be analyzed over holding time.

Analytics Environmental Laboratory is certified by the states of New Hampshire, Maine, Massachusetts, Connecticut, Rhode Island, Virginia, Maryland, and is accredited by the Department of Defense (DOD) ELAP program. A list of actual certified parameters is available upon request.

If you have any questions on these results, please do not hesitate to contact us

Authorized signature

Stephen L. Knollmeyer Lab. Director

Date

This report shall not be reproduced, except in full, without the written consent of Analytics Environmental Laboratory, LLC.

CLIENT SAMPLE ID

Project Name: Sprague Energy

Project Number: 4101-11-01 Field Sample ID: LAB QC

June 29, 2011 SAMPLE DATA

Lab Sample ID: MB06291C Matrix: Solid 100 Percent Solid: **Dilution Factor:** 100

Collection Date: N/A Lab Receipt Date: N/A

Analysis Date: 06/29/11

COMPOUND Chloroethane	Limit of Detection (LOD) µg/kg	Limit of Quantitation	_		Limit of	Limit of	
		(LOQ) μg/kg	Result µg/kg	COMPOUND	Detection (LOD) μg/k	Quantitation g(LOQ) μ g/kg	Result μg/kg
	50	100	U	1,1-Dichloroethane	50	100	U
Chloroform	50	75	U	1,I-Dichloroethene	50	75	U
Chloromethane	50	100	U	1,1-Dichloropropene	50	100	U
is-1,2-Dichloroethene	50	100	U	1,2,3-Trichlorobenzene	50	100	U
cis-1,3-Dichloropropene	50	100	U	1,2,3-Trichloropropane	50	100	U
Dibromochloromethane	50	75	U	1,2,4-Trichlorobenzene	50	100	U
Dibromomethane	50	100	U	1,2,4-Trimethylbenzene	50	100	U
Dichlorodifluoromethane	50	100	U	1,2-Dibromo-3-chloropropand	50	100	U
Ethylbenzene	50	100	U	1.2-Dibromoethane	50	75	U
Freon-113	50	100	Ū	1,2-Dichlorobenzene	50	100	Ŭ
Hexachlorobutadiene	50	100	Ū	1,2-Dichloroethane	50	75	Ü
sopropl benzene	50	100	Ŭ	1,2-Dichloropropane	50	75	U
n,p-Xylene	50	100	Ŭ	1,3,5-Trimethylbenzene	50	100	Ü
Methyl-tert-butyl ether (MTE		75	Ŭ	1,3-Dichlorobenzene	50	100	Ŭ
Viethylene chloride	250	500	Ū	1,3-Dichloropropane	50	100	Ü
Naphthalene	50	100	Ŭ	1,4-Dichlorobenzene	50	100	Ŭ
-Butylbenzene	50	100	Ü	2,2-Dichloropropane	50	100	Ü
-Propylbenzene	50	100	Ü	Methyl ethyl ketone	500	1000	Ü
-Xylene	50	100	Ü	2-Chlorotoluene	50	100	U.
ec-Butylbenzene	50	100	Ŭ	2-Hexanone	500	1000	U.
Styrene	50	100	Ü	4-Chlorotoluene	50	100	Ü
ert-Butylbenzene	50	100	Ŭ	4-Isopropyltoluene	50	100	Ü
Tetrachloroethene	50	100	Ŭ	4-Methyl-2-pentanone	500	1000	Ü
Tetrahydrofuran	250	500	Ü	Acetone	500	1000	Ü
oluene	50	100	Ü	Benzene	50	100	U
rans-1.2-Dichloroethene	50	100	Ü	Bromobenzene	50	100	U
rans-1,3-Dichloropropene	50	100	U	Bromochloromethane	50	100	U
rais-1,5-Diemotopropene richloroethene	50	100	U	Bromodichloromethane	50 50	75	U
richlorofluoromethane	50 50	100	U	Bromoform	50 50	75 75	U
/invl chloride	50	100	U	Bromomethane	50 50	100	U
Vienes (total)	50 50	100	U	Carbon Disulfide	50 50	100	U
.1.1.2-Tetrachloroethane	50 50	100	U	Carbon Distillinge Carbon tetrachloride	50 50		
	50 50	100	U			100	U
,1,1-Trichloroethane	50 50			Chlorobenzene	50	100	U
,1,2,2-Tetrachloroethane ,1,2-Trichloroethane	50 50	75 75	U U	(TIC) n-Heptane (TIC) n-Hexane	NA NA	NA NA	NF NF
Bromofluorobenz	zene 94%			andard Recovery hloroethane 104%		d8-Toluene	106%
U=Undetected	J=Estima				=Detected in	- Tordene	10070

METHODOLOGY: Results between the LOD and LOQ are reported as estimated (J flag). Difficult compounds and laboratory contaminants are not reported below the LOQ

COMMENTS: Results are expressed on a dry weight basis. TIC=Tentatively Identified Compound. NF=Not Found using NIST library search criteria.

June 30, 2011 SAMPLE DATA

Lab Sample ID:

70313-1

Matrix:

Solid

Percent Solid:

100

Dilution Factor:

99

Collection Date: Lab Receipt Date: 06/02/11 06/06/11

Analysis Date:

06/29/11

CLIENT SAMPLE ID

Project Name:

Sprague Energy

Project Number:

4101-11-01

Field Sample ID:

Tank 201-South Portland-

201102000505-1

ANALYTICAL RESULTS VOLATILE ORGANICS									
COMPOUND	Limit of Detection (LOD) µg/kg	Limit of Quantitation (LOQ) µg/kg	Result µg/kg	COMPOUND	Limit of Detection (LOD) µg/kg	Limit of Quantitation g(LOQ) µg/kg	Result µg/kg		
Chloroethane	50	99	U	1,1-Dichloroethane	50	99	U		
Chloroform	50	75	U	1,1-Dichloroethene	50	75	U		
Chloromethane	50	99	U	1,1-Dichloropropene	50	99	U		
cis-1.2-Dichloroethene	50	99	U	1.2.3-Trichlorobenzene	50	99	U		
cis-1,3-Dichloropropene	50	99	U	1,2,3-Trichloropropane	50	99	U		
Dibromochloromethane	50	75	U	1,2,4-Trichlorobenzene	50	99	U		
Dibromomethane	50	99	U	1,2,4-Trimethylbenzene	50	99	53 J		
Dichlorodifluoromethane	50	99	U	1,2-Dibromo-3-chloropropane	50	99	U		
Ethylbenzene	50	99	U	1.2-Dibromoethane	50	75	Ū		
Freon-113	50	99	Ū	1,2-Dichlorobenzene	50	99	Ŭ		
Hexachlorobutadiene	50	99	Ü	1,2-Dichloroethane	50	75	Ü		
Isopropi benzene	50	99	U	1.2-Dichloropropane	50	75	Ū		
m,p-Xylene	50	99	63 J	1,3,5-Trimethylbenzene	50	99	Ü		
Methyl-tert-butyl ether (MTBI	E) 50	75	U	1,3-Dichlorobenzene	50	99	Ū		
Methylene chloride	249	497	U	1,3-Dichloropropane	50	99	Ü		
Naphthalene	50	99	U	1.4-Dichlorobenzene	50	99	Ü		
n-Butylbenzene	50	99	Ū	2,2-Dichloropropane	50	99	Ŭ		
n-Propylbenzene	50	99	Ū	Methyl ethyl ketone	497	994	Ü		
o-Xylene	50	99	Ū	2-Chlorotoluene	50	99	Ü		
sec-Butylbenzene	50	99	Ū	2-Hexanone	497	994	Ü		
Styrene	50	99	Ŭ	4-Chlorotoluene	50	99	Ü		
tert-Butylbenzene	50	99	U	4-Isopropyltoluene	50	99	Ü		
Fetrachloroethene	50	99	Ü	4-Methyl-2-pentanone	497	994	Ŭ		
Fetrahydrofuran	249	497	Ŭ	Acetone	497	994	Ŭ		
Γoluene	50	99	Ū	Benzene	50	99	Ü		
rans-1,2-Dichloroethene	50	99	Ŭ	Bromobenzene	50	99	Ü		
rans-1,3-Dichloropropene	50	99	Ū	Bromochloromethane	50	99	Ŭ		
Trichloroethene	50	99	Ü	Bromodichloromethane	50	75	Ŭ		
Frichlorofluoromethane	50	99	Ü	Bromoform	50	75	Ŭ		
Vinyl chloride	50	99	Ü	Bromomethane	50	99	Ü		
Xylenes (total)	50	99	Ü	Carbon Disulfide	50	99	U		
1,1,1,2-Tetrachloroethane	50	99	U	Carbon tetrachloride	50	99	U		
.1.1-Trichloroethane	50	99	Ü	Chlorobenzene	50	99	U		
1,1,2,2-Tetrachloroethane	50	75	U	(TIC) n-Heptane	NA	NA	NF		
1,1,2-Trichloroethane	50	75	U	(TIC) n-Hexane	NA	NA NA	NF		
Th	1000			andard Recovery					
Bromofluorobenze	ene 103%		<u>'</u>	hloroethane 104%		18-Toluene	109%		
U=Undetected	J=Estimat	ed E	=Exceed	ls Calibration Range B=	Detected in				

METHODOLOGY: Sample collection in accordance with SW-846 method 5035A. Sample analysis was conducted according to: Test Methods for Evaluating Solid Waste, SW-846 Method 8260B. Results between the LOD and LOQ are reported as estimated (J flag). Difficult compounds and laboratory contaminants are not reported below the LOQ COMMENTS: Results are expressed on a dry weight basis. TIC=Tentatively Identified Compound. NF=Not Found using NIST library search criteria. Samples were analyzed past holding time at the request of the client and due to a communication error from the client.

June 30, 2011 SAMPLE DATA

Lab Sample ID:

70313-2

Matrix:

Solid

Percent Solid:

100

Dilution Factor:

98

Collection Date: Lab Receipt Date: 06/02/11 06/06/11

Analysis Date:

06/29/11

CLIENT SAMPLE ID

Project Name:

Sprague Energy

Project Number:

4101-11-01

Field Sample ID:

Tank 201-South Portland-

201102000505-2

ANALYTICAL RESULTS VOLATILE ORGANICS Limit of Limit of Limit of Limit of Detection Quantitation Result Quantitation Result Detection **COMPOUND** (LOD) µg/kg (LOQ) µg/kg µg/kg **COMPOUND** (LOD) \(\mu g/\kg(\textrm{LOQ}) \(\mu g/\kg \) \(\mu g/\kg \) Chloroethane 49 98 Ū 1,1-Dichloroethane 49 98 U 49 73 Chloroform U 49 73 1,1-Dichloroethene U Chloromethane 49 98 Ū 49 98 1,1-Dichloropropene U cis-1,2-Dichloroethene 40 98 U 98 1,2,3-Trichlorobenzene 49 U cis-1,3-Dichloropropene 49 98 U 1,2,3-Trichloropropane 40 98 U Dibromochloromethane 49 73 U 98 40 1,2,4-Trichlorobenzene U Dibromomethane 49 98 U 98 1,2,4-Trimethylbenzene 49 U Dichlorodifluoromethane 49 98 U 1,2-Dibromo-3-chloropropane 49 98 U Ethylbenzene 49 98 U 1.2-Dibromoethane 49 73 U Freon-113 49 98 Ħ 1.2-Dichlorobenzene 49 98 U Hexachlorobutadiene 49 98 H 1.2-Dichloroethane 49 73 U Isopropl benzene 49 98 Ħ 1.2-Dichloropropane 40 73 U m,p-Xylene 49 98 51 J 1.3.5-Trimethylbenzene 49 98 H Methyl-tert-butyl ether (MTBE) 49 73 U 1.3-Dichlorobenzene 49 98 H Methylene chloride 245 490 U 1.3-Dichloropropane 49 98 H Naphthalene 49 98 H 1.4-Dichlorobenzene 49 98 U n-Butylbenzene 49 98 H 2.2-Dichloropropane 49 98 Ħ n-Propylbenzene 49 98 U Methyl ethyl ketone 490 979 U o-Xylene 49 98 U 2-Chlorotoluene 49 98 H sec-Butylbenzene 49 98 U 979 2-Hexanone 490 Ū Styrene 49 98 H 4-Chlorotoluene 49 98 T tert-Butylbenzene 98 49 Ħ 4-Isopropyltoluene 49 98 ₹ J 98 Tetrachloroethene 49 [] 4-Methyl-2-pentanone 490 979 ŧΙ 490 Tetrahydrofuran 245 U Acetone 490 979 Ū Toluene 98 49 H Benzene 49 98 U trans-1,2-Dichloroethene 98 49 U Bromobenzene 49 98 U trans-1,3-Dichloropropene 98 U 49 Bromochloromethane 49 98 U Trichloroethene 98 49 U Bromodichloromethane 49 73 Į J Trichlorofluoromethane 49 98 Į I Bromoform 73 49 U Vinyl chloride 49 98 U Bromomethane 49 98 U Xylenes (total) 49 98 U Carbon Disulfide 49 98 U 1.1.1.2-Tetrachloroethane 49 98 U Carbon tetrachloride 49 98 U 1.1.1-Trichloroethane 49 98 U 98 Chlorobenzene 49 U 1.1.2.2-Tetrachloroethane 49 73 U (TIC) n-Heptane NA NA NF 1.1.2-Trichloroethane 40 73 U (TIC) n-Hexane NA NA NF Surrogate Standard Recovery Bromofluorobenzene 94% d4-1,2-Dichloroethane d8-Toluene U=Undetected J=Estimated E=Exceeds Calibration Range B=Detected in

METHODOLOGY: Sample collection in accordance with SW-846 method 5035A. Sample analysis was conducted according to: Test Methods for Evaluating Solid Waste, SW-846 Method 8260B. Results between the LOD and LOQ are reported as estimated (J flag). Difficult compounds and laboratory contaminants are not reported below the LOO

COMMENTS: Results are expressed on a dry weight basis. TIC=Tentatively Identified Compound, NF=Not Found using NIST library search criteria. Samples were analyzed past holding time at the request of the client and due to a communication error from the client.

June 30, 2011 SAMPLE DATA

Lab Sample ID:

70313-3

Matrix:

Solid

Percent Solid:

100

Dilution Factor:

84

Collection Date:

06/02/11

Lab Receipt Date:

06/06/11

Analysis Date:

06/29/11

Project Name:	Sprague Energy
---------------	----------------

CLIENT SAMPLE ID

4101-11-01

Project Number: Field Sample ID:

Tank 201-South Portland-

201102000505-1

ANALYTICAL RESULTS VOLATILE ORGANICS Limit of Limit of Limit of Limit of Detection Quantitation Result Quantitation Result Detection **COMPOUND** (LOD) μ g/kg (\hat{L} OQ) μ g/kg μ g/kg **COMPOUND** (LOD) μg/kg(LOQ) μg/kg μg/kg Chloroethane 42 U 84 1,1-Dichloroethane 42 84 U 42 Chloroform 63 U 42 1,1-Dichloroethene 63 U 42 84 Ū Chloromethane 42 84 U 1,1-Dichloropropene cis-1,2-Dichloroethene 42 84 U 42 84 1.2.3-Trichlorobenzene U cis-1,3-Dichloropropene 42 84 U 1,2,3-Trichloropropane 42 84 H Dibromochloromethane 42 63 U 42 84 U 1.2,4-Trichlorobenzene Dibromomethane 42 84 U 42 84 48 J 1.2.4-Trimethylbenzene Dichlorodifluoromethane 42 84 U 42 84 1,2-Dibromo-3-chloropropane 11 Ethylbenzene 42 84 Ū 1.2-Dibromoethane 42 63 H Freon-113 42 84 П 1.2-Dichlorobenzene 42 84 11 Hexachlorobutadiene 42 84 H 1.2-Dichloroethane 42 63 II Isopropi benzene 42 84 H 1.2-Dichloropropane 42 63 FI m.p-Xylene 42 84 57 J 1.3.5-Trimethylbenzene 42 84 U Methyl-tert-butyl ether (MTBE) 42 63 11 1.3-Dichlorobenzene 42 84 U Methylene chloride 209 418 U 1.3-Dichloropropane 42 84 U Naphthalene 84 42 U 1.4-Dichlorobenzene 42 84 U n-Butylbenzene 42 84 11 2.2-Dichloropropane 42 84 U n-Propylbenzene 42 84 U Methyl ethyl ketone 418 836 U o-Xylene 42 84 U 2-Chlorotoluene 42 84 U sec-Butylbenzene 42 84 U 2-Hexanone 418 836 U Styrene 42 84 H 4-Chlorotoluene 42 84 U tert-Butylbenzene 84 U 42 4-Isopropyltoluene 42 84 U Tetrachloroethene U 42 84 4-Methyl-2-pentanone 418 836 U Tetrahydrofuran 209 U 418 Acetone 418 836 U Toluene 84 U 42 Benzene 42 84 U trans-1,2-Dichloroethene 42 84 U Bromobenzene 42 84 U trans-1,3-Dichloropropene 84 42 U Bromochloromethane 42 84 U Trichloroethene 42 84 H Bromodichloromethane 42 63 U Trichlorofluoromethane 42 84 H Bromoform 42 63 U Vinyl chloride 42 84 H Bromomethane 42 84 U Xvlenes (total) 42 84 U Carbon Disulfide 42 84 U 1.1.1.2-Tetrachloroethane 42 84 Ιĭ Carbon tetrachloride 42 84 U 1.1.1-Trichloroethane 42 84 U Chlorobenzene 42 84 U 1.1.2.2-Tetrachioroethane 42 63 U (TIC) n-Heptane NA NA NF 1.1.2-Trichloroethane 42 63 U (TIC) n-Hexane NA NA NF Surrogate Standard Recovery Bromofluorobenzene 101% d4-1,2-Dichloroethane d8-Toluene E=Exceeds Calibration Range U=Undetected J=Estimated B=Detected in

METHODOLOGY: Sample collection in accordance with SW-846 method 5035A. Sample analysis was conducted according to: Test Methods for Evaluating Solid Waste, SW-846 Method 8260B. Results between the LOD and LOQ are reported as estimated (J flag). Difficult compounds and laboratory contaminants are not reported below the LOQ

COMMENTS: Results are expressed on a dry weight basis. TIC=Tentatively Identified Compound. NF=Not Found using NIST library search criteria. Samples were analyzed past holding time at the request of the client and due to a communication error from the client.

June 30, 2011 SAMPLE DATA

Lab Sample ID:

70313-4

Matrix: Percent Solid: Solid 100

Dilution Factor:

QQ

Collection Date: Lab Receipt Date: 06/02/11 06/06/11

Analysis Date:

06/29/11

CLIENT SAMPLE ID

Project Name: Sprague Energy

Project Number: 4101-11-01

Tank 201-South Portland-Field Sample ID:

201102000505-2

Limit of Limit of Limit of Limit of Detection Quantitation Result Quantitation Result Detection COMPOUND (LOD) μg/kg (LOQ) μg/kg μg/kg (LOD) $\mu g/kg$ (LOQ) $\mu g/kg$ $\mu g/kg$ **COMPOUND** Chloroethane 49 QΩ U 1,1-Dichloroethane 49 99 U 49 Chloroform 74 U 1,1-Dichloroethene 49 74 U 40 99 Chloromethane U 1,1-Dichloropropene 49 99 U 99 cis-1,2-Dichloroethene 40 U 1,2,3-Trichlorobenzene 49 99 U cis-1,3-Dichloropropene 99 Ū 49 49 99 1,2,3-Trichloropropane U Dibromochloromethane 49 74 U 99 1,2,4-Trichlorobenzene 49 U Dibromomethane 99 Ū 49 99 59 J 1,2,4-Trimethylbenzene 49 Dichlorodifluoromethane 49 99 ¥.J 90 1,2-Dibromo-3-chloropropane 49 U Ethylbenzene 49 99 IJ 1.2-Dibromoethane 74 49 U Freon-113 49 99 П 1.2-Dichlorobenzene 40 qq U Hexachlorobutadiene 49 99 Tī 74 1.2-Dichloroethane 49 U Isopropl benzene 49 99 TT 1,2-Dichloropropane 40 74 U m.p-Xylene 49 99 64 J 1,3,5-Trimethylbenzene 49 99 TE Methyl-tert-butyl ether (MTBE) 49 74 U 1.3-Dichlorobenzene 49 99 П Methylene chloride 493 247 U 1.3-Dichloropropane 49 99 H Naphthalene 99 40 U 1.4-Dichlorobenzene 49 99 ŦŤ n-Butylbenzene 49 99 U 2.2-Dichloropropane 49 99 H n-Propylbenzene 49 99 U Methyl ethyl ketone 493 987 H o-Xylene 49 99 П 2-Chiorotoluene 49 99 П sec-Butylbenzene 49 99 H 2-Hexanone 493 987 H Styrene 49 99 U 4-Chlorotoluene 99 49 11 tert-Butylbenzene 99 49 U 4-Isopropyltoluene 49 99 I Tetrachloroethene 99 49 U 4-Methyl-2-pentanone 493 987 IJ Tetrahydrofuran 493 247 ΪĬ Acetone 493 987 U Toluene 99 49 U Benzene 49 99 H trans-1,2-Dichloroethene 49 99 11 Bromobenzene 49 99 U trans-1,3-Dichloropropene gq 49 U Bromochioromethane 49 99 H 99 Trichloroethene 49 IJ Bromodichloromethane 49 74 H Trichlorofluoromethane 99 40 H Bromoform 49 74 U 99 Vinyl chloride 40 U 99 Bromomethane 49 U 99 Xvlenes (total) 49 H Carbon Disulfide 49 99 U 1.1.1.2-Tetrachloroethane 99 49 U Carbon tetrachloride 49 99 U 1.1.1-Trichloroethane 49 99 11 Chlorobenzene 49 99 U 1.1.2.2-Tetrachloroethane 49 74 U (TIC) n-Heptane NA NA NF 1.1.2-Trichloroethane 49 74 H (TIC) n-Hexane NA NA NF Surrogate Standard Recovery Bromofluorobenzene 97% d4-1,2-Dichloroethane d8-Toluene U=Undetected J=Estimated E=Exceeds Calibration Range B=Detected in

ANALYTICAL RESULTS VOLATILE ORGANICS

METHODOLOGY: Sample collection in accordance with SW-846 method 5035A. Sample analysis was conducted according to: Test Methods for Evaluating Solid Waste, SW-846 Method 8260B. Results between the LOD and LOQ are reported as estimated (J flag). Difficult compounds and laboratory contaminants are not reported below the LOO

COMMENTS: Results are expressed on a dry weight basis. TIC=Tentatively Identified Compound. NF=Not Found using NIST library search criteria. Samples were analyzed past holding time at the request of the client and due to a communication error from the client.

June 30, 2011 SAMPLE DATA

Lab Sample ID: 70313-5 Matrix: Solid

Percent Solid: 100 **Dilution Factor:** 93

Collection Date: 06/02/11

Lab Receipt Date: 06/06/11 Analysis Date: 06/29/11

CLIENT SAMPLE ID

Project Name: Sprague Energy

Project Number: 4101-11-01

Field Sample ID: Tank 208-South Portland-

201102000505-1

COMPOUND	Limit of Detection (LOD) µg/kg	Limit of Quantitation (LOQ) µg/kg		COMPOUND	Limit of Detection (LOD) µg/k	Limit of Quantitation (g(LOQ) µg/k	
Chloroethane	46	93	U	1,1-Dichloroethane	46	93	U
Chloroform	46	70	U	1,1-Dichloroethene	46	70	U
Chloromethane	46	93	U	1,1-Dichloropropene	46	93	U
cis-1,2-Dichloroethene	46	93	U	1.2.3-Trichlorobenzene	46	93	U
cis-1,3-Dichloropropene	46	93	U	1,2,3-Trichtoropropane	46	93	U
Dibromochloromethane	46	70	U	1,2,4-Trichlorobenzene	46	93	U
Dibromomethane	46	93	U	1,2,4-Trimethylbenzene	46	93	U
Dichlorodifluoromethane	46	93	U	1,2-Dibromo-3-chloropropane	46	93	U
Ethylbenzene	46	93	U	1,2-Dibromoethane	46	70	U
Freon-113	46	93	U	1,2-Dichlorobenzene	46	93	U
Hexachlorobutadiene	46	93	U	1,2-Dichloroethane	46	70	U
Isopropl benzene	46	93	U	1.2-Dichloropropane	46	70	U
m,p-Xylene	46	93	U	1,3,5-Trimethylbenzene	46	93	Ū
Methyl-tert-butyl ether (MTBE	E) 46	70	U	1,3-Dichlorobenzene	46	93	U
Methylene chloride	232	465	U	1,3-Dichloropropane	46	93	U
Naphthalene	46	93	U	1,4-Dichlorobenzene	46	93	Ū
n-Butylbenzene	46	93	U	2,2-Dichloropropane	46	93	U
n-Propylbenzene	46	93	U	Methyl ethyl ketone	465	930	U
o-Xylene	46	93	U	2-Chlorotoluene	46	93	Ū
sec-Butylbenzene	46	93	U	2-Hexanone	465	930	Ū
Styrene	46	93	U	4-Chlorotoluene	46	93	Ū
tert-Butylbenzene	46	93	U	4-Isopropyltoluene	46	93	U
Tetrachloroethene	46	93	U	4-Methyl-2-pentanone	465	930	Ü
Fetrahydrofuran	232	465	U	Acetone	465	930	Ū
Foluene	46	93	U	Benzene	46	93	Ü
rans-1,2-Dichloroethene	46	93	Ü	Bromobenzene	46	93	Ŭ
trans-1,3-Dichloropropene	46	93	U	Bromochloromethane	46	93	Ŭ
Trichloroethene	46	93	U	Bromodichloromethane	46	70	Ŭ
Frichlorofluoromethane	46	93	Ü	Bromoform	46	70	Ŭ
Vinyl chloride	46	93	Ū	Bromomethane	46	93	Ü
Xylenes (total)	46	93	U	Carbon Disulfide	46	93	Ū
1,1,1,2-Tetrachloroethane	46	93	Ū	Carbon tetrachloride	46	93	Ŭ
1,1,1-Trichloroethane	46	93	Ū	Chlorobenzene	46	93	Ü
1,1,2.2-Tetrachloroethane	46	70	Ŭ	(TIC) n-Heptane	NA	NA ·	NF
1,1,2-Trichloroethane	46	70	Ü	(TIC) n-Hexane	NA	NA	NF
***************************************				andard Recovery			
Bromofluorobenzer	ne 95%	d4	-1,2-Dic	hloroethane 103%		d8-Toluene	110%

METHODOLOGY: Sample collection in accordance with SW-846 method 5035A. Sample analysis was conducted according to: Test Methods for Evaluating Solid Waste, SW-846 Method 8260B. Results between the LOD and LOQ are reported as estimated (J flag). Difficult compounds and laboratory contaminants are not reported below the LOQ

COMMENTS: Results are expressed on a dry weight basis. TIC=Tentatively Identified Compound, NF=Not Found using NIST library search criteria. Samples were analyzed past holding time at the request of the client and due to a communication error from the client.

Authorized signature Stallan

June 30, 2011 SAMPLE DATA

70313-6

Lab Sample ID: Matrix:

Solid Percent Solid: 100

Dilution Factor: 95

Collection Date: 06/02/11 06/06/11 Lab Receipt Date:

Analysis Date: 06/29/11

CLIENT SAMPLE ID

Project Name: Sprague Energy

Project Number: 4101-11-01

Field Sample ID: Tank 209-South Portland-

201102000505

A	NALYTIC	AL RESUL	TS VO	LATILE ORGANICS			
COMPOUND	Limit of Detection (LOD) µg/kg	Limit of Quantitation (LOQ) µg/kg	Result µg/kg	COMPOUND	Limit of Detection (LOD) µg/k	Limit of Quantitation g (LOQ) µg/k	Result
Chloroethane	48	95	U	1,1-Dichloroethane	48	95	U
Chloroform	48	71	U	1,1-Dichloroethene	48	71	U
Chloromethane	48	95	U	1,1-Dichloropropene	48	95	U
cis-1,2-Dichloroethene	48	95	U	1,2,3-Trichlorobenzene	48	95	U
cis-1,3-Dichloropropene	48	95	U	1,2,3-Trichloropropane	48	95	Ū
Dibromochloromethane	48	71	U	1,2,4-Trichlorobenzene	48	95	U
Dibromomethane	48	95	U	1,2,4-Trimethylbenzene	48	95	65 J
Dichlorodifluoromethane	48	95	U	1,2-Dibromo-3-chloropropane	48	95	U
Ethylbenzene	48	95	U	1,2-Dibromoethane	48	71	U
Freon-113	48	95	U	1,2-Dichlorobenzene	48	95	Ü
Hexachlorobutadiene	48	95	Ū	1,2-Dichloroethane	48	71	Ü
Isopropl benzene	48	95	Ū	1,2-Dichloropropane	48	71	Ü
m,p-Xylene	48	95	67 J	1,3,5-Trimethylbenzene	48	95	Ü
Methyl-tert-butyl ether (MTBE	E) 48	71	U	I,3-Dichlorobenzene	48	95	Ū
Methylene chloride	238	476	U	1,3-Dichloropropane	48	95	Ū
Naphthalene	48	95	U	1.4-Dichlorobenzene	48	95	Ü
n-Butylbenzene	48	95	U	2,2-Dichloropropane	48	95	Ü
n-Propylbenzene	48	95	Ū	Methyl ethyl ketone	476	953	Ŭ
o-Xylene	48	95	U	2-Chlorotoluene	48	95	Ü
sec-Butylbenzene	48	95	U	2-Hexanone	476	953	Ŭ
Styrene	48	95	U	4-Chlorotoluene	48	95	Ŭ
ert-Butylbenzene	48	95	U	4-Isopropyltoluene	48	95	Ü
Fetrachloroethene	48	95	U	4-Methyl-2-pentanone	476	953	Ü
letrahydrofuran	238	476	U	Acetone	476	953	Ũ
Toluene	48	95	U	Benzene	48	95	Ŭ
rans-1,2-Dichloroethene	48	95	U	Bromobenzene	48	95	Ŭ
rans-1,3-Dichloropropene	48	95	Ü	Bromochloromethane	48	95	Ü
Frichloroethene	48	95	Ū	Bromodichloromethane	48	71	Ü
Frichlorofluoromethane	48	95	Ü	Bromoform	48	71	Ŭ
Vinyl chloride	48	95	Ū	Bromomethane	48	95	Ŭ
Xylenes (total)	48	95	Ü	Carbon Disulfide	48	95	Ü
1,1,1,2-Tetrachloroethane	48	95	Ū	Carbon tetrachloride	48	95	Ŭ
,1,1-Trichloroethane	48	95	Ü	Chlorobenzene	48	95	Ü
,1.2,2-Tetrachloroethane	48	71	Ü	(TIC) n-Heptane	NA	NA	NF
,1,2-Trichloroethane	48	71	Ü	(TIC) n-Hexane	NA	NA	NF
				andard Recovery			
Bromofluorobenze	ne 100%	d4	-1,2-Dic	hloroethane . 111%		d8-Toluene	106%
U=Undetected	J=Estima	ed E	=Exceed	s Calibration Range B=1	Detected in		

METHODOLOGY: Sample collection in accordance with SW-846 method 5035A. Sample analysis was conducted according to: Test

Methods for Evaluating Solid Waste, SW-846 Method 8260B. Results between the LOD and LOQ are reported as estimated (J flag). Difficult compounds and laboratory contaminants are not reported below the LOQ COMMENTS: Results are expressed on a dry weight basis. TIC=Tentatively Identified Compound. NF=Not Found using NIST library search criteria. Samples were analyzed past holding time at the request of the client and due to a communication error from the client.

June 30, 2011 SAMPLE DATA

Lab Sample ID:

70313-7 Solid

Matrix: Percent Solid:

100

Dilution Factor:

84

Collection Date: Lab Receipt Date:

06/02/11 06/06/11

Analysis Date:

06/29/11

CLIENT SAMPLE ID

Project Name:

Sprague Energy

Project Number: Field Sample ID:

4101-11-01 Tank 215-South Portland-

201102000505

Limit of Limit of Limit of Limit of Detection Quantitation Result Quantitation Result Detection COMPOUND (LOD) μg/kg (LOQ) μg/kg μg/kg $(LOD) \mu g/kg (LOQ) \mu g/kg \mu g/kg$ COMPOUND Chloroethane 42 24 U 1,I-Dichloroethane 42 84 U 42 Chloroform U 63 1,1-Dichloroethene 42 63 U 42 Chloromethane 84 U 1,1-Dichloropropene 42 84 U 42 cis-1,2-Dichloroethene 84 U 1,2,3-Trichlorobenzene 42 84 U cis-1,3-Dichloropropene 42 84 U 1,2,3-Trichloropropane 42 84 U Dibromochloromethane 42 63 U 1,2,4-Trichlorobenzene 42 84 U Dibromomethane 42 84 U 1,2,4-Trimethylbenzene 42 84 42 J Dichlorodifluoromethane 42 84 H 1,2-Dibromo-3-chloropropane 42 84 U Ethylbenzene 42 84 U 1,2-Dibromoethane 42 63 U Freon-113 42 84 U 1,2-Dichlorobenzene 42 84 U Hexachlorobutadiene 42. 84 U 1.2-Dichloroethane 42 63 U Isopropl benzene 42. 94 11 1.2-Dichloropropane 42 63 U m.p-Xvlene 42 84 45 J 42 1.3.5-Trimethylbenzene 24 U Methyl-tert-butyl ether (MTBE) 42 63 U 1,3-Dichlorobenzene 42 84 U Methylene chloride 210 419 1.3-Dichloropropane U 42. 84 Ū Naphthalene 42 84 U 1.4-Dichlorobenzene 42 84 U n-Butylbenzene 42 84 U 2,2-Dichloropropane 42 84 F n-Propylbenzene 42 84 Ū Methyl ethyl ketone 419 839 H o-Xylene 42 84 Ū 2-Chiorotoluene 42 84 H sec-Butylbenzene 42 84 H 2-Hexanone 419 839 П Styrene 42 84 U 4-Chlorotoluene 42 84 U tert-Butylbenzene 42 84 U 4-Isopropyltoluene 42. 84 U Tetrachloroethene 42 84 U 4-Methyl-2-pentanone 419 839 U Tetrahydrofuran 210 419 U Acetone 839 419 U Toluene 42 84 U Benzene 42 84 U trans-1,2-Dichloroethene 42 84 U Bromobenzene 42 84 U trans-1,3-Dichloropropene 42 84 U Bromochloromethane 42 84 U Trichloroethene 42 84 U Bromodichloromethane 42 63 U Trichlorofluoromethane 42 84 U Bromoform 42 63 H Vinyl chloride 42 84 U Bromomethane 42 84 U Xvlenes (total) 42 84 U Carbon Disulfide 42 84 U 1.1.1.2-Tetrachloroethane 42 84 U Carbon tetrachloride 42 84 U 1.1.1-Trichloroethane 42 84 U Chlorobenzene 42 84 H 1.1.2.2-Tetrachloroethane 42 63 U (TIC) n-Heptane NA NA NE 1.1.2-Trichloroethane 42 63 U (TIC) n-Hexane NA NA NF Surrogate Standard Recovery Bromofluorobenzene 99% d4-1,2-Dichloroethane d8-Toluene 106% U=Undetected J=Estimated E=Exceeds Calibration Range B=Detected in

ANALYTICAL RESULTS VOLATILE ORGANICS

METHODOLOGY: Sample collection in accordance with SW-846 method 5035A. Sample analysis was conducted according to: Test Methods for Evaluating Solid Waste, SW-846 Method 8260B. Results between the LOD and LOQ are reported as estimated (J flag). Difficult compounds and laboratory contaminants are not reported below the LOO

COMMENTS: Results are expressed on a dry weight basis. TIC=Tentatively Identified Compound. NF=Not Found using NIST library search criteria. Samples were analyzed past holding time at the request of the client and due to a communication error from the client.

Chain of Custody Form

South Portland Maine Sprague Rolling Mills EPA 8260B/5035 Sprague Energy 020-0003744 4101-11-01 Methanol Organic Yes Preservation: Project Name: Samples iced: AC Job No.: Analysis: AC Office: Project #: Terminal: Matrix:

12000 aerospace avenue, suite 200 nina.anderson@inspectorate.com Houston, TX 77034 (√, ○ °c 5 days Temp of Control

Send Report:

* Ok to non only I vial from each tank" everythereugh containers to COC state -1 and -2 (just label as 1 sample with 2 contamers given). - or wash as as per cheart (see email)

	2000		. (T	((Parallel State of Sta		n	¢	9	E.								
	Sample		Spigot	Spigot	Spigot	Spigot	Spigot	Spigot	Spigot	Spigot	Spinot	G d						
	Product Grade	Asphalt Pg 64-28	Asphalt Pg 64-28	Asphalt Pg 64-28	Asphalt Pg 64-28	Asphalt Pg 64-28	Asphalt Pg 64-28	Asphalt Pg 64-28	Asphalt Pg 64-28	Asphalt Pg 64-28	Asphalt Pg 64-28		A CONTRACT OF THE PROPERTY OF					
	Sampled By	Mark Bickford	Mark Bickford	Mark Bickford	Mark Bickford	Mark Bickford	Mark Bickford	Mark Bickford	Mark Bickford	Mark Bickford	Mark Bickford						The state of the s	
	Tank No.	Tank 201	Tank 201	Tank 202	Tank 202	Tank 208	Tank 208	Tank 209	Tank 209	Tank 215	Tank 215			11/01/0	35			
	Sample Time																	
	Sample Date	6/2/2011	6/2/2011	6/2/2011	6/2/2011	6/2/2011	6/2/2011	6/2/2011	6/2/2011	6/2/2011	6/2/2011							
*	Sample No	Fank 201-South Portland-201102000505-1	了 Fank 201-South Portland-201102000505-2	7 Tank 202-South Portland-201102000505-1		G Tank 208-South Portland-201102000505-1	Tank 208-South Portland-201102000505-2	Tank 209-South Portland-201102000505-1	C Fank 209-South Portland-201102000505-2	Cank 215-South Portland-201102000505-1	09 Fank 215-South Portland-201102000505-2		0	of		1		

Relinquished by: Relinquished by: Date/Time: Date/Time:

Sprague Representative:

Date/Time:

Received By: Date/Time: Received By: Date/Time:

4 viols fer Tank 2011... * No sample named "Tank 202" given; run all 4 vials seperatelly

ANALYTICS SAMPLE RECEIPT CHECKLIST

AEL LAB#: 10313 CLIENT: Inspectorate PROJECT: Sargave	COOLER NUMBER: NUMBER OF COOLERS: DATE RECEIVED:	<u>Client's</u> coole 1 6/6/11	۲
A: PRELIMINARY EXAMINATION: 1. Cooler received by(initials): DW	DATE COOLER OPENED: Date Received:	6/6/11	
2. Circle one: # And delivered (If so, skip 3) 3. Did cooler come with a shipping slip?	Shipped Y		
3a. Enter carrier name and airbill number here:	I	144	
4. Were custody seals on the outside of cooler? How many & where: Seal Date:	Y Seal Name:	N	
5. Did the custody seals arrive unbroken and intact upon arrival?	Y	(* A	
6. COC ² .	_		
 7. Were Custody papers filled out properly (ink.signed, etc)? 8. Were custody papers sealed in a plastic bag? 9. Did you sign the COC in the appropriate place? 10. Was the project identifiable from the COC papers? 11. Was enough ice used to chill the cooler? 	Y Y Y Temp. of cooler:	N N N O	
B. Log-In: Date samples were logged in:	ву: 🛮 放 💮		
12. Type of packing in cooler(bubble wrap, popcorn)	Y		•
13. Were all bottles sealed in separate plastic bags?14. Did all bottles arrive unbroken and were labels in good condition?	Y (So	N	conded;
15. Were all bottle labels complete(ID.Date.time.etc.)	(V)	oxe.	no todadi
16. Did all bottle labels agree with custody papers?	Y	There makes	, to I the
17. Were the correct containers used for the tests indicated:	Y	N NOT	> will book
18. Were samples received at the correct pH?	Y	NTA labels	read live
19. Was sufficient amount of sample sent for the tests indicated?	(Y)) (OC	
20. Were all samples submitted within holding time?	Y	(n) - Sample	s have been
21. Were bubbles absent in VOA samples?	Y	NR on ho	nd and just
If NO, List Sample ID's and Lab #s:		on 6	laslii when
22. Laboratory labeling verified by (initials):	Date: _	their extensions the	y ave alread